Stereotsomers \longrightarrow molecules with the same connectivity of atoms, but different orientations of groups in three-dimenstona) space
enantiomers

(Stereoisomers that are mirror inge, of each other
but not identical
diastereomers U
stereoisomers that are NOT enantiomers

An $s p^{3}$ carbon atom that is tetrahedral with four different groups \rightarrow it is chiral
\Rightarrow Called a chiral center

A carbon atom that is not chiral will have a plane of symmetry

A pair of enantiomers

Really hard part \rightarrow naming the enantiomers
R, S convention \rightarrow Cahn, Ingold, Prelog (CIP) rules For a carbon with four different groups:

1) Assign atomic number priorities for each group, ranking them $1 \rightarrow 4$
First point of difference wins
2) Position the molecule so you are looking down the $C \rightarrow 4$ bond Lowest priority group, often an H atom
3) Count the remaining three groups in order \rightarrow If $l \rightarrow 2 \rightarrow 3$ is clockwise $\rightarrow R$
\rightarrow If $\mid \rightarrow 2 \rightarrow 3$ is counterclockwise $\rightarrow S$

Diastereomer \rightarrow stereoisomers that are not enantiomers

Applies to molecules with two or more chiral centers

Molecules With 2 Chiral Centers

1) If a molecule contains n chiral centers there are 2^{n} possible stereoisomers \rightarrow fewer if symmetry is present (see "miso")
2) R, R and S, S are enantiomers R,S and S, R are enantiomers
All other pairs are diastereomers ($E_{x} . R, R$ and R, S)
3) To identify stereoisomer relationships \rightarrow assign R and S to each chiral center and see Rule 2) above

$$
2^{2}=4
$$

stereoispmers

4) A meso compound has chiral centers but is not chiral due to symmetry $\binom{$ plane of }{ symmetry }
You need to draw the molecule in the
most symmetric possible conformation to look for symmetry \rightarrow eclipsed is OK

2 chiral centers
 \rightarrow symmetry \rightarrow both chiral centers have the same four groups

\downarrow

5) Meso compounds will always be the $R, S=S, R$ stereoisomer if both chiral centers have the same four groups

You need to be able to recognize chiral centers in molecules

